Using Distributed Arrays in UV-CDAT

Alex Pletzer, Dave Kindig, and Srinath Vadlamani (Tech-X Corp.)
Charles Doutriaux (LLNL)

pletzer@txcorp.com

Webex presentation: May 9 2012
Work funded by MoDAVE: DOE/SBIR DE-FG02-08ER85153

Overview

 What are distributed arrays?
 What are distributed arrays good for?
 Parallelism in UV-CDAT
* Distributed arrays in UV-CDAT

— How to create a distributed array

— How to access data on other processors
* Ghosted distributed arrays in UV-CDAT

— A special kind of distributed array for
accessing halo data

* Examples

Carry home message

* You can do parallel computing/postprocessin
In UV-CDATp P JIPOStP J

>>> import distarray

What are distributed arrays?

* A big array that is patitioned in sub-arrays
 Each process (P#) owns a sub-array

What are distributed arrays good for?

Divide work among processes
— Ensemble runs, linear interpolation, finite differencing

When you don't have enough memory to hold the entire
array

— 0.1 deg: 3600*1800*100*4 = 2.6GB
Want leverage the cores on your computer
For convenience

30

20

10

-10 (I) 10 20 30 40 50 !
i

Parallelism in UV-CDAT

* UV-CDAT will look for the Message Passing
Interface (MPI) library

— Does not assume shared memory

* Not implemented: OpenMP, GPU (CUDA,
OpenCL), MIC

* The python “threading” module will not help
(Python interpreter is not trhead safe)

MPI| execution model:
start to finish

|

UV-CDAT will build mpi4py if MPI is found

e e—y

pletzer@idefix:~/uvcdat/cdat/mybuild =]10][X

>>> Import mp|4py CDAT USE_SYSTEM WGET
CDAT_USE_SYSTEM YASM

CDAT USE_SYSTEM ZLIB

CMAKE BUTLD TYPE

Page 4 of 4

CMAKE INSTALL PREFIX /home/pletzer/uvcdat/cdat/install

CURL EXECUTABLE

GIT _PROLOGE git://

MPI EXTRA LIBRARY sr/local/openmpi-1.4.3/1ib/libmpi.so;/usr
<:::::: MPI LIBRARY /usr/local/openmpi-1.4.3/1ib/1ibmpi cxx.so

SF=QUAKE EXECUTABLE /usr/bin/gmake

VISIT HOSTNAME TheftRTtReTTpTCOn
file cmd /usr/bin/file
gfortran LIBRARY /usr/1ib/gcc/i686-redhat-linux/4.5.1/1libgfort

MPI EXTRA LIBRARY: Extra MPI libraries to link against

Press [enter] to edit option (Make Version 2.8.6
Press [c] to configure

Press [h] for help Press [g] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

mpi4py: developed by Lisandro Dalcin

For embarrassingly parallel jobs, run your
script with....

$ mpiexec -n 8 python <my_script.py>

. I(_eigt)ear Interpolation speedup on a 8-core workstation
* Load balancing is the limit

800 Execution time vs humber of procs

— total

700 - = min

- = max

600 -

number of processes

Distributed array to access remote data

Each process exposes a “slab” of data (window) to all other
processes

Access the remote data windows using “get” method

Import distarray

da = distarray.daZeros((4,5), numpy.float32) dal-1: -

rk = da.rk # MPI rank al-1:, 1]

sz = da.dz # number processes « "

northsSlab = (slice(-1, None, None), —north
slice(0, None, None))

da.expose(northSlab, winiD='north")

dé[:] = ... # set data
otherRk = ... # set src rank
northData = da.get(otherRk, winlD="north’)

There can be as many slabs as desired

 Each slab gets a unique ID (a string, a tuple, an
Integer, a “key”)

Slabs can be overlapping

A slab can occupy the entire data range
Supports N-dimensional arrays

Strides are allowed, non-contiguous data are copied
to a buffer

* The get method is a remote memory access
 All methods are collective

“north”

HeaSt”

Ghosted dist arrays will set the slabs for
you

 Each slab gets a unique tuple, e.g. (1, 0) for north, (0,
1) for east, etc.

(1,0)

(0, -1) (0, 1)

gda = distarray.ghZeros((4,5), numpy.float32,
ghostWidth=1)

northData = gda.get(otherRk, winlD=(1, 0)) # north
southData = gda.get(otherRk, winlD=(-1,0)) # south

Example: computing the Laplacian of a
function
. Function is a Gaussian

* Regular domain decomposition
* Need neighboring data

10Weak. scaling of Laplacian problem: nCells=1000

— Intel i7 1.87Ghz laptop

0.00 — Quad core AMD Opteron 2376 ||
0.00(--- ideal

0.0 10%}

[TTT]

speedup

|II||II|I]

Summary

Pull paradigm, the consumer triggers the
communication (requires MPI-2)

MPI made easy (No MPIL_Init, MPIL_Finalize, ...)
Distarray is an extension of numpy array

— Inherits the behavior of numpy arrays (operations,
slicing, etc...)

— Supports common data types (float64, int32,...)

More integration with cdms2 arrays may be
desirable

— Should we inherit from cdms2 array?
May want to add domain decomposition functionality
Users are required to free the windows (da.free())

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

