
Alex Pletzer, Dave Kindig, and Srinath Vadlamani (Tech-X Corp.)
Charles Doutriaux (LLNL)

pletzer@txcorp.com

Webex presentation: May 9 2012
Work funded by MoDAVE: DOE/SBIR DE-FG02-08ER85153

Using Distributed Arrays in UV-CDAT

Overview

• What are distributed arrays?
• What are distributed arrays good for?
• Parallelism in UV-CDAT
• Distributed arrays in UV-CDAT

– How to create a distributed array
– How to access data on other processors

• Ghosted distributed arrays in UV-CDAT
– A special kind of distributed array for

accessing halo data
• Examples

Carry home message

• You can do parallel computing/postprocessing
in UV-CDAT

>>> import distarray

What are distributed arrays?

• A big array that is patitioned in sub-arrays
• Each process (P#) owns a sub-array

P0

P1P0P2

What are distributed arrays good for?
• Divide work among processes

– Ensemble runs, linear interpolation, finite differencing
• When you don't have enough memory to hold the entire

array
– 0.1 deg: 3600*1800*100*4 = 2.6GB

• Want leverage the cores on your computer
• For convenience

– the cubed-sphere grid naturally partitions space

Parallelism in UV-CDAT
• UV-CDAT will look for the Message Passing

Interface (MPI) library
– Does not assume shared memory

• Not implemented: OpenMP, GPU (CUDA,
OpenCL), MIC

• The python “threading” module will not help
(Python interpreter is not trhead safe)

MPI execution model:
start to finish

UV-CDAT will build mpi4py if MPI is found

>>> import mpi4py

mpi4py: developed by Lisandro Dalcin

For embarrassingly parallel jobs, run your
script with....

• Linear interpolation speedup on a 8-core workstation
(3D)

• Load balancing is the limit

$ mpiexec -n 8 python <my_script.py>

Distributed array to access remote data
• Each process exposes a “slab” of data (window) to all other

processes
• Access the remote data windows using “get” method

import distarray
da = distarray.daZeros((4,5), numpy.float32)
rk = da.rk # MPI rank
sz = da.dz # number processes
northSlab = (slice(-1, None, None),
 slice(0, None, None))
da.expose(northSlab, winID='north')
 ...
da[:] = ... # set data
otherRk = ... # set src rank
northData = da.get(otherRk, winID='north')

“north”

da[-1:, :]

There can be as many slabs as desired
• Each slab gets a unique ID (a string, a tuple, an

integer, a “key”)
• Slabs can be overlapping
• A slab can occupy the entire data range
• Supports N-dimensional arrays
• Strides are allowed, non-contiguous data are copied

to a buffer
• The get method is a remote memory access
• All methods are collective

“north”

“east”

Ghosted dist arrays will set the slabs for
you

• Each slab gets a unique tuple, e.g. (1, 0) for north, (0,
1) for east, etc.

(1,0)

(0, 1)

gda = distarray.ghZeros((4,5), numpy.float32,
 ghostWidth=1)

...
northData = gda.get(otherRk, winID=(1, 0)) # north
southData = gda.get(otherRk, winID=(-1,0)) # south

(0, -1)

(-1,0)

Example: computing the Laplacian of a
function

• Function is a Gaussian
• Regular domain decomposition
• Need neighboring data

Summary
• Pull paradigm, the consumer triggers the

communication (requires MPI-2)
• MPI made easy (No MPI_Init, MPI_Finalize, ...)
• Distarray is an extension of numpy array

– Inherits the behavior of numpy arrays (operations,
slicing, etc...)

– Supports common data types (float64, int32,...)
• More integration with cdms2 arrays may be

desirable
– Should we inherit from cdms2 array?

• May want to add domain decomposition functionality
• Users are required to free the windows (da.free())

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

